
c©2012 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

doi: http://dx.doi.org/10.1109/TSP.2012.2223693

http://dx.doi.org/10.1109/TSP.2012.2223693

1

A Semi-Parallel Successive-Cancellation Decoder
for Polar Codes

Camille Leroux∗, Alexandre J. Raymond†, Gabi Sarkis†, and Warren J. Gross†
∗IMS Laboratory - Institut Polytechnique de Bordeaux, Bordeaux, France

†Department of Electrical and Computer Engineering, McGill University, Montréal, Québec, Canada
camille.leroux@ipb.fr, {alexandre.raymond, gabi.sarkis}@mail.mcgill.ca, warren.gross@mcgill.ca

Abstract—Polar codes are a recently-discovered family of
capacity-achieving codes that are seen as a major breakthrough
in coding theory. Motivated by the recent rapid progress in the
theory of polar codes, we propose a semi-parallel architecture
for the implementation of successive cancellation decoding. We
take advantage of the recursive structure of polar codes to make
efficient use of processing resources. The derived architecture has
a very low processing complexity while the memory complexity
remains similar to that of previous architectures. This drastic
reduction in processing complexity allows very large polar code
decoders to be implemented in hardware. An N = 217 polar code
successive cancellation decoder is implemented in an FPGA. We
also report synthesis results for ASIC.

I. INTRODUCTION

Claude Shannon [1] proved the existence of a maximum
rate—called the channel capacity—at which information can
be reliably transmitted over a channel, and the existence of
codes which enable data transmission at that rate.

Since then, different capacity-approaching codes have been
created [2], [3]; however, designing capacity-achieving codes
with an explicit construction eluded researchers until Arıkan
proposed polar codes [4] and proved that they asymptotically
achieve the capacity of binary-input symmetric memoryless
channels. Later works proved that polar codes achieve the
channel capacity for any discrete memoryless channel and,
by extension, for any continuous memoryless channel [5].
Moreover, Arıkan provided an explicit construction method for
polar codes and showed that they can be efficiently encoded
and decoded with complexity O(N logN), where N is the
code length. Polar codes were also shown to be good at solving
other information theoretic problems in an efficient manner
[6], [7], [8].

On the other hand, polar codes require large code lengths to
approach the capacity of the underlying channel (N > 220), in
which case, over 20 million computational nodes are required
to decode one codeword. This presents a real challenge when it
comes to implementing the associated successive cancellation
(SC) decoder in hardware.

Despite the large code lengths required, polar codes have
two desirable properties for hardware implementation. First,
they are explicitly described in a recursive framework. This
regular structure enables resource sharing and significantly
simplifies the scheduling and the architecture. Additionally,
unlike many common capacity-approaching codes, polar codes

do not require any kind of randomness to achieve good error-
correcting performance. This helps avoid memory conflicts
and graph-routing problems during the implementation.

Much of the work in the literature is aimed at improving
the error-correction performance of polar codes at moderate
lengths. Examples of this work include: list decoding [9], non-
binary polar codes [10], and using more complex construction
methods [11]. In this work, we focus on implementing the
standard SC decoding algorithm. Any improvement made to
a SC decoding implementation can benefit more complex
decoding algorithms since all polar codes are based on the
same recursive construction. In addition, a low-complexity SC
decoder implementation enables the use of longer polar codes.

The original description of the SC decoding algorithm
[4] mapped the decoder to the factor graph of the polar
code, without going into details of a specific architecture.
The resulting SC decoder includes N log2N node processors,
requires N log2N memory elements (ME), and takes 2N − 2
steps to decode one codeword.

A particular scheduling of SC decoding was shown to
enable beneficial resource sharing without affecting throughput
[12]. An SC decoder architecture containing only N node
processors and 2N memory elements was detailed. It was also
suggested to perform computations in the logarithmic domain
in order to reduce the complexity of each node processor.

In this study, we apply well known implementation methods
to optimize a polar code successive-cancellation decoder, such
as semi-parallel architecture [13], min-sum algorithm [14],
arithmetic resource sharing and RAM access sharing. Some
of these strategies were proposed for other channel decoder
architectures.

Similar to what was done for LDPC decoders [13], we
further reduce the hardware complexity of SC decoding by
introducing a semi-parallel architecture. We estimate the speed
penalty induced by its processing resource reduction and show
that it is negligible compared to the associated complexity
reduction. Logic synthesis results on FPGA and ASIC targets
confirm the higher efficiency of the proposed semi-parallel
architecture.

In Section II, we briefly review the polar code encoding and
decoding processes. Section III describes the scheduling of SC
decoding and defines the latency and utilization rate of a SC
decoder. Section IV surveys existing decoder architectures and
highlights their low computational-resource utilization rate.
Section V describes and analyzes the proposed semi-parallel

2

Fig. 1. Polar code encoder with N = 8.

SC decoder architecture. A detailed hardware architecture is
given in Section VI. Finally, FPGA and ASIC implementation
details are presented in Section VII.

II. POLAR CODES

A. Polar Code Construction and Encoding
Polar codes are linear block codes of length N = 2n whose

generator matrix is constructed using the nth Kronecker power
of the matrix F = [1 0

1 1]. For example, for n = 3,

F⊗3 =

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

. (1)

The equivalent graph representation of F⊗3 is illustrated in
Fig. 1, where u = u70 represents the information-bit vector
and x = x70 is the codeword sent over the channel. We use the
same notation for vectors as that of [4], namely uba consists
of bits ua, ..., ub of the vector u.

When the received vectors are decoded using an SC decoder,
every estimated bit ûi has a predetermined error probability—
given that bits ui−10 were correctly decoded—that tends to-
wards either 0 or 0.5. Moreover, the proportion of estimated
bits with a low error probability tends towards the capacity of
the underlying channel, as proved in [4]. Polar codes exploit
this phenomenon, called channel polarization, by using the
most reliable K bits to transmit information, while setting—
or freezing—the remaining N − K bits to a predetermined
value, such as 0.

B. Successive Cancellation Decoding
Given a received vector y corresponding to a transmitted

codeword x, the SC decoder successively estimates the trans-
mitted bits u0 to uN−1. At step i, if i is not in the frozen set,
the SC decoder estimates ûi such that:

ûi =

{
0, if Pr(y,ûi−1

0 |ui=0)

Pr(y,ûi−1
0 |ui=1)

> 1

1, otherwise,
(2)

Fig. 2. Butterfly-based SC decoder with N = 8.

where Pr(y, ûi−10 |ui = b) is the probability that y was
received and the previously decoded bits are ûi−10 , given the
currently decoded bit is b, where b ∈ {0, 1}. The ratio of
probabilities in (2) represents the likelihood ratio (LR) of bit
ûi.

III. SC DECODING SCHEDULING

The SC decoding algorithm successively evaluates the LR
Li of each bit ûi. Arıkan showed that these LR computations
can be efficiently performed in a recursive manner by using a
data flow graph which resembles the structure of a fast Fourier
transform. That structure, shown in Fig. 2, is named a butterfly-
based decoder. Messages passed in the decoder are LR values
denoted as Ll,i, where l and i correspond to the graph stage
index and row index, respectively. In addition, L0,i = L(ûi)
and Ln,i is the LR directly calculated from the channel output
yi. The nodes in the decoder graph calculate the messages
using one of two functions:

Ll,i =

{
f
(
Ll+1,i;Ll+1,i+2l

)
if B(l, i) = 0

g
(
ŝl,i−2l ;Ll+1,i−2l ;Ll+1,i

)
if B(l, i) = 1,

(3)
where ŝ is a modulo-2 partial sum of decoded bits, B(l, i) ,
i
2l

mod 2, 0 ≤ l < n, and 0 ≤ i < N . In the LR domain,
functions f and g can be expressed as:

f(a, b) =
1 + ab

a+ b
(4)

g(ŝ, a, b) = a1−2ŝb. (5)

Function f can be computed as soon as a = Ll+1,i and b =
Ll+1,i+2l are available. On the other hand, the computation
of g requires knowledge of ŝ, which can be computed by
using the factor graph of the code. For instance, in Fig. 1,
ŝ2,1 is estimated by propagating û30 in the factor graph: ŝ2,1 =

3

û1⊕û3. This partial sum of û30 is then used to compute L2,5 =
g(ŝ2,1;L3,1;L3,5).

The need for partial sum computations causes strong data
dependencies in the SC algorithm. This constrains the order
in which the LRs can be computed in the graph. Fig. 3
shows the scheduling of the decoding process for N = 8
using a butterfly-based SC decoder. At each clock cycle
(CC), LRs are evaluated by computing function f or g. It
is assumed here that those functions are calculated as soon as
the required data is available. Once the channel information
yN−10 is available on the right hand side of the decoder, bits ûi
are successively estimated by updating the appropriate nodes
of the graph, from right to left. When bit ûi is estimated,
all partial sums involving ûi are updated, allowing future
evaluations of function g to be carried out.

One can notice that when stage l is activated, a maximum
of 2l operations can be performed simultaneously. Moreover,
only one kind of function (f or g) is used when activating a
given stage. Finally, a stage l is activated 2n−l times during
the decoding process of a vector. As a consequence, assuming
one clock cycle per stage activation, the total number of clock
cycles required to decode a vector is:

Lref =

n−1∑
l=0

2n−l = 2N − 2. (6)

Despite the seemingly parallel structure of this decoder,
strong data dependencies constrain the decoding process and
make this decoder quite inefficient. For instance, if we define
an active node as one whose inputs are ready, allowing it to
perform its operations, then only a fraction of the nodes are
actually active during each decoding clock cycle, as shown in
Fig. 3. In order to characterize the efficiency of an SC decoder
architecture, we use the utilization rate, α, which represents
the average number of active nodes per clock cycle:

α
M
=

total number of node updates

computational resource complexity× computation time
. (7)

In SC decoding, N log2N node updates are required to
decode one vector. A butterfly-based SC decoder performs this
amount of computation with N log2N node processors which
are used during 2N−2 clock cycles; its utilization rate is thus:

αref =
N log2N

N log2N(2N − 2)
≈ 1

2N
. (8)

The utilization rate rapidly decreases towards 0 as N grows.
This indicates potential for a more efficient utilization of
processing resources.

IV. STATE-OF-THE-ART SC DECODER ARCHITECTURES

Since polar codes are a fairly new coding scheme, very few
architectures have been proposed for their implementation in
hardware. This section gives an overview of existing decoder
architectures and describes their main properties.

Fig. 3. Scheduling for the butterfly-based SC decoder with N = 8.

A. Tree SC Decoder

Section III showed that whenever a stage l is activated, only
2l nodes of the graph are updated. For this reason, the N nodes
of each stage l can be implemented using only 2l processing
elements (PE) as shown in [12]. A PE is a programmable
functional unit able to perform either function f or function
g. This tree decoder consists of n stages of 2l PEs each, with
0 ≤ l < n. This resource sharing allows a latency identical
to that of the butterfly-based decoder (2N − 2 clock cycles)
with only N − 1 PEs associated with 2N memory elements
(ME) required to store temporary LR calculations and channel
LRs. As will be detailed in Section VI-A, resource sharing
within a PE enables us to reduce the complexity of a PE:
CPE ≤ Cf +Cg . Therefore, in the least favorable case (CPE =
Cf + Cg), the utilization rate of the tree decoder is:

αtree =
N log2N

2(N − 1)(2N − 2)
≈ log2N

4N
. (9)

This improves the utilization rate by a factor of log2N
2

over the butterfly-based decoder. However, this architecture
does not address the fact that only a single stage is active at
any given time, leaving the remaining n − 1 stages idle; two
architectures proposed in [12] to address this shortcoming will
be reviewed in the following sections.

B. Line SC Decoder

Fig. 3 illustrates that a maximum of N
2 computations of

functions f and g is actually performed in one clock cycle.
Furthermore, only N − 1 MEs are required to store partial
results, in addition to the N MEs needed to store the input
LRs from the channel. In other words, a decoder with only
N
2 processing elements and ∼2N MEs can achieve the same

latency as a butterfly-based decoder. This architecture, intro-
duced in [12] and named line decoder, consists of N

2 PEs. Its
utilization rate can be computed as:

αline =
N log2N

N(2N − 2)
≈ log2N

2N
. (10)

C. Vector-Overlapped Decoder

It is also possible to use the idle stages of the tree decoder
to decode multiple received vectors simultaneously. It was

4

Fig. 4. Scheduling and LR data flow graph of a semi-parallel SC decoder
with N = 8 and P = 2.

shown in [12] that this decoding scheme yields an increased
utilization rate:

αvo ≈
V log2N

4N + (2V + 2) log2(V+1
4)

, (11)

where V represents the number of overlapped vectors pro-
cessed in the decoder. However, this architecture requires that
memory be duplicated V times, which becomes impractical
when V � 1.

V. SEMI-PARALLEL SC DECODER

A. Principle and Scheduling

The architectures presented in Section IV share the common
flaw that their utilization rate decreases as the code length
increases. We therefore propose to improve α by limiting the
number of PEs implemented in the decoder.

Considering that, in the line decoder, the N
2 PEs are only

all activated simultaneously twice during the decoding of a
vector—regardless of the code size—it follows that we can
increase the utilization rate of a decoder by reducing the
number of PEs without significantly impacting throughput. For
example, a modified line decoder implementing only N

4 PEs
will only incur a 2 clock cycle penalty compared to a full line
decoder. This simplified architecture, which we name semi-
parallel decoder, has a lower complexity at the expense of a
small increase in latency.

This approach can be generalized to a smaller number of
PEs. Let us define P < N

2 as the number of implemented
PEs. Fig. 4 describes the scheduling of a semi-parallel decoder
with {P = 2;N = 8}, where it can be observed that this
scheduling only requires 2 additional clock cycles over the
equivalent line decoder. Indeed, the computations performed

during clock cycles {0, 1} and {8, 9} are executed in a single
clock cycle in a line decoder.

In addition, Fig. 4 depicts the data flow graph of LRs
generated during the decoding process for {N = 8;P = 2}.
Data generated during CC = {0, 1} is not needed after CC
= 5 and can therefore be replaced by the data generated in
CC = {8, 9}. It follows that the same memory element can
be used to store the results of both computations.

In general, the memory requirements remain unchanged
in comparison with the line decoder: the semi-parallel SC
decoder needs N MEs for the channel information y, and
N − 1 MEs for intermediate results. Consequently, for a
code of length N , the memory requirements of the semi-
parallel decoder remain constant regardless of the number of
implemented PEs.

It should be noted that the data dependencies involving ŝ
are not represented in Fig. 4. Therefore, even though it may
seem that the data generated at CC = {8, 9} could have been
produced earlier, this is not the case as the value of û3 must
be known in order to compute L2,4, L2,5, L2,6 and L2,7.

B. Complexity vs Latency

Although the reduced number of processing elements imple-
mented in a semi-parallel SC decoder increases latency, this
reduction only affects the processing of stages that require
more than P node updates. Starting from this general obser-
vation, we now quantify the impact of reducing the number
of processing elements on latency. In order to keep some
regularity in the scheduling, we assume that the number of
implemented PEs, P , is a power of 2 and P = 2p.

In a line SC decoder, every stage l of the graph is updated
2n−l times and it takes a single clock cycle to perform those
updates since a sufficient number of PEs is implemented.
However, in a semi-parallel decoder, a limited number of
PEs is implemented and it may take several clock cycles to
complete a stage update. The stages satisfying 2l ≤ P are not
affected and their latency is unchanged. However, for stages
requiring more LR computations than there are implemented
PEs, it takes multiple clock cycles to complete the update.
Specifically, 2l

P clock cycles are required to update a stage l
with P implemented PEs.

Therefore, the total latency of a semi-parallel decoder is:

LSP =

p∑
l=0

2n−l︸ ︷︷ ︸
non-affected stages

+

n−1∑
l=p+1

2n−l2l−p︸ ︷︷ ︸
affected stages

= 2N(1− 1

2P
) + (n− p− 1)

N

P

= 2N +
N

P
log2(

N

4P
). (12)

As expected, the latency of the semi-parallel decoder in-
creases as the number of implemented PEs decreases. How-
ever, this latency penalty is not linear with respect to P . In
order to quantify the trade-off between the latency of the semi-
parallel decoder (LSP) and P , we define the relative-speed

5

0

0.2

0.4

0.6

0.8

1
α

SP
an

d
σ

SP

0 20 40 60 80 100 120 140
Number of implemented PEs (P)

σSP ,N = 210

σSP ,N = 211

σSP ,N = 212

σSP ,N = 220

αSP ,N = 210

αSP ,N = 211

αSP ,N = 212

αSP ,N = 220

Fig. 5. Utilization rate (αSP) and relative-speed factor (σSP) for the semi-
parallel SC decoder.

factor of a semi-parallel SC decoder as:

σSP =
Lref

LSP
=

2P

2P + log2
N
4P

, (13)

where Lref is defined in (6).
This metric defines the throughput attainable by the semi-

parallel decoder, relative to that of the line decoder. One
should notice that the definition of σSP implicitly assumes
that both decoders can be clocked at the same frequency:
Tclk-line = Tclk-SP. In Section VII, synthesis results show that
due to the large number of PEs in the line decoder, we actually
have Tclk-line > Tclk-SP. Consequently, (13) represents the least
favorable case for the semi-parallel architecture.

The utilization rate of a semi-parallel decoder, on the other
hand, is defined as:

αSP =
N log2N

2P (2N + N
P log2(N4P)

=
log2N

4P + 2 log2(N4P)
. (14)

Fig. 5 plots σSP and αSP as P is varied from 1 to 128
for code lengths N = {210, 211, 212, 220}. One should first
notice that both metrics vary only marginally with respect to
the code length. Moreover, these curves show that σSP is close
to 1 even for small values of P . This means that a small
number of PEs is sufficient to achieve a throughput similar to
that of a line decoder. For example, the semi-parallel decoders
presented in this figure can achieve >90% of the throughput
of a line SC decoder using only 64 PEs. The number of PEs
is reduced by a factor N

2P , which is 8192 for N = 220 and
P = 64. For P = 64 and N = 1024, the utilization rate
(αSP = 3.5%) is improved by a factor 8 compared to the line
decoder. This demonstrates a more efficient use of processing
resource during the decoding process.

This dramatic complexity reduction makes the size of the
processing resources very small in comparison to that of the
memory resources required by this architecture, as discussed
in Section VII.

Fig. 6. Semi-parallel SC decoder architecture

VI. HARDWARE ARCHITECTURE

This section provides a detailed description of the various
modules comprised in the semi-parallel decoder, whose top-
level architecture is illustrated in Fig. 6.

A. Processing Elements

SC polar code decoders carry out their likelihood estima-
tions using update rules (4) and (5). However, those equations
require divisions and multiplications, which makes them un-
suitable for a hardware implementation. To reduce complexity,
reference [12] suggested replacing these LR updates with
equivalent functions in the logarithmic domain. In this paper,
we denote log likelihood ratio (LLR) values by λX = log(X),
where X is an LR.

In the LLR domain, functions f and g become the sum-
product algorithm (SPA) equations:

λf (λa, λb) = 2 tanh−1
(

tanh

(
λa
2

)
tanh

(
λb
2

))
(15)

λg(ŝ, λa, λb) = λa(−1)ŝ + λb. (16)

At first glance, λf appears more complex than its coun-
terpart (4) as it involves hyperbolic functions. However, [14]
showed that it could be approximated using the minimum
function, yielding the simpler min-sum (MS) equations:

λf (λa, λb) ≈ ψ?(λa)ψ?(λb) min(|λa|, |λb|) (17)

λg(ŝ, λa, λb) = λa(−1)ŝ + λb, (18)

where |X| represents the magnitude of variable X and ψ?(X),
its sign, defined as:

ψ?(X) =

{
1 when X ≥ 0
−1 otherwise. (19)

Equations (17) and (18) indeed suggest a much simpler
hardware implementation than their counterparts in the LR
domain. In addition, Fig. 7 shows that although (17) involves
an approximation, its impact on decoding performance is
minimal.

Hardware-wise, we propose merging λf and λg into a
single processing element using the sign and magnitude (SM)

6

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
FE

R
/B

E
R

0 1 2 3 4
Eb/N0 (dB)

FER MS PC(1024, 512) FER MS PC(16384, 8192)
FER SPA PC(1024, 512) FER SPA PC(16384, 8192)
BER MS PC(1024, 512) BER MS PC(16384, 8192)
BER SPA PC(1024, 512) BER SPA PC(16384, 8192)

Fig. 7. BER/FER performance with and without using the min-sum
approximation on an AWGN channel, for N = 210 and N = 214.

representation for LLR values as it simplifies the realization
of (17):

ψ(λf) = ψ(λa)⊕ ψ(λa) (20)
|λf | = min(|λa|, |λb|), (21)

where ψ(X), like ψ?(X), describes the sign of variable X ,
although in a way that is compatible with the sign and
magnitude representation:

ψ(X) =

{
0 when X ≥ 0
1 otherwise. (22)

These computations are implemented using a single XOR
gate and a (Q−1)-bit compare-select (CS) operator, as shown
in Fig. 8. Function λg , on the other hand, is implemented using
an SM adder/subtractor. In SM format, ψ(λg) and |λg| depend
not only on ŝ, ψ(λa), ψ(λb), |λa|, and |λb|, but also on the
relation between the magnitudes |λa| and |λb|. For instance,
if ŝ = 0, ψ(λa) = 0, ψ(λb) = 1, and |λa| > |λb|, then
ψ(λg) = ψ(λa) and |λg| = |λb| − |λa|. This relation between
|λa| and |λb| is represented by bit γab, which is generated
using a magnitude comparator:

γab =

{
1 if |λa| > |λb|
0 otherwise. (23)

The sign ψ(λg) depends on four binary variables: ψ(λa),
ψ(λb), ŝ and γab. By applying standard logic minimization
techniques to the truth table of ψ(λg), we obtain the following
simplified boolean equation:

ψ(λg) = γab · ψ(λb) + γab · (ŝ⊕ ψ(λa)), (24)

where ⊕, · and + represent binary XOR, AND and OR,
respectively.

As shown in Fig. 8, the computation of ψ(λg) only requires
an XOR gate and a multiplexer, while γab is already available
from the CS operator, which is shared between λf and λg .

Fig. 8. Sign and magnitude processing element architecture.

On the other hand, the magnitude |λg| is the addition or
subtraction of max(|λa|, |λb|) and min(|λa|, |λb|):

|λg| = max(|λa|, |λb|) + (−1)χ min(|λa|, |λb|) (25)
χ = ŝ⊕ ψ(λa)⊕ ψ(λb), (26)

where bit χ determines whether min(|λa|, |λb|) should be
inverted or not. |λg| is implemented using an unsigned adder,
a multiplexer, and a two’s complement operator—used to
negate a number so that the unsigned adder can be used to
perform subtraction by overflowing—in addition to the shared
CS operator.

Finally, the result of the processing element is determined
by bit B(l, i), such that:

ψ(λLl,i
) =

{
ψ(λf) when B(l, i) = 0
ψ(λg) otherwise (27)

|λLl,i
| =

{
|λf | when B(l, i) = 0
|λg| otherwise. (28)

B. LLR Memory

Throughout the decoding process, the PEs compute LLRs
which are reused in subsequent steps of the process. To
allow this reuse to take place, the decoder must store those
intermediate estimates in a memory. It was shown in [12] that
2N − 1 Q-bit memory elements are sufficient to store the
received vector and keep track of all the intermediate Q-bit
LLR estimates. This memory can be conceptually represented
as a tree structure in which each level stores LLRs for a stage
l of the decoding graph, with 0 ≤ l ≤ n. Channel LLRs are
stored in the leaves of the tree whereas decoded bits are read
from the root.

In order to avoid introducing additional delays in decoding,
we seek to have single-clock-cycle operation of the processing
elements, which requires that it be possible to simultaneously
read their inputs and write their outputs in a single clock
cycle. A straightforward solution would be to implement
these parallel accesses using a register-based architecture, as
was proposed in [12] for the line decoder. However, pre-
liminary synthesis results demonstrated that the routing and
multiplexing requirements associated with this approach were
not suitable for the implementation of the very large code
lengths required by polar codes. We thus instead propose to

7

implement this parallel access using random access memory
(RAM). In a polar codes decoder, the PEs consume twice
as much information as they produce. Therefore, our semi-
parallel architecture uses a dual-port RAM configured with a
write port of width PQ and a read port of width 2PQ, and a
specific placement of data in memory. Note that using RAM
has the added benefit that it also significantly reduces the area
per stored bit over the register-based approach.

Within each memory word, LLRs must be properly aligned
such that data is presented in a coherent order to the PEs.
For example, the {N = 8;P = 2} semi-parallel SC decoder
shown in Fig. 2 computes λL1,0

and λL1,1
by accessing a

memory word containing {λL2,0
, λL2,2

, λL2,1
, λL2,3

} in this
order—which follows the bit-reversed indexing scheme of
[4]—and presenting those LLRs to the PEs. Effecting this bit-
reversal throughout in this figure leads to a mirrored decoding
graph, as seen in Fig. 9, with bit-reversed vectors for the
channel information x and the decoded output û.

This ordering is advantageous since the processing elements
only access contiguous values in memory. For example, LLRs
{λL2,0

, λL2,2
, λL2,1

, λL2,3
}, discussed earlier, are now located

in LLR locations {8, 9, 10, 11} in memory, after the received
vector x. This observation holds true for any nodes emulated
by a PE in the mirrored graph. This means that the decoder
can now feed a contiguous block—word 2 in Fig. 10, in our
example—of memory directly to the PEs. Note that this means
that the received vector y must be stored in bit-reversed order
in memory, but this can easily be done by modifying the order
in which the encoder sends the codeword over the channel.

In order to simplify the memory address generation, we
use the particular structure and data placement illustrated in
Fig. 10, where the unused values computed by the PEs in the
stages satisfying l ≤ p are also stored in memory, to preserve
a regular structure. It allows for a direct connection between
the dual-port RAM and the PEs, without using complex
multiplexing logic or interconnection networks. On the other
hand, this layout has an overhead of Q(2P log2 P+1) bits over
the minimum required amount of memory. Fortunately, this
overhead is constant with respect to N , which implies a shrink-
ing proportion of the overall memory requirements as code
length increases, for a fixed P . For example, our approach
needs 769Q additional bits of RAM for P = 64, regardless
of code size. The overhead for a {N = 1024;P = 64}
decoder can be computed to be ∼37.6% while that percentage
shrinks to ∼1.17% for a N = 32, 768 decoder with the same
parameters.

C. Bypass Buffer

When a graph stage l, where l ≤ p, is processed, the
data generated by the processing elements needs to be reused
immediately after being produced. If we assume that the LLR
RAM does not have write-through capability, then a PQ-bit
buffer register is required to loop these generated data directly
back to the input of the PEs, while preventing a combinatorial
loop in the circuit.

Fig. 9. Mirrored decoding graph for N = 8.

Fig. 10. Organization of the LLR memory for N = 8 and P = 2 with
uniform memory block size.

D. Channel Buffer

Since the RAM operates on PQ-bit words natively, a buffer
was introduced at the input of the decoder to accumulate P
Q-bit LLRs from the channel before writing them to RAM
as a memory word. This buffer allows the decoder to receive
channel LLRs serially while keeping the interface to the RAM
uniform for both the PEs and the channel inputs.

E. Partial Sum Registers

Throughout the decoding process, the processing elements
must be provided with specific partial sums as part of λg .
Furthermore, whenever a bit ûi is estimated, many such partial
sums typically require updating.

Unlike the likelihood estimates stored in the LLR memory,
partial sums do not have a regular structure that would allow
them to be packed in memory words. As a result, storing them
in a RAM would lead to scattered memory accesses requiring
multiple clock cycles. To avoid lowering the throughput of the
decoder, we instead store them in registers. Each g node of the
decoding graph is mapped to a specific flip-flop in the partial
sum register. The partial sum update logic module, described
in Section VI-F, updates the values of this register each time
a bit ûi is estimated.

We found that N−1 bits suffice to store the required partial
sums if we time multiplex the use of those memory locations

8

Fig. 11. Architecture of the partial sum registers with N = 8.

between all the nodes emulated by a given processing element.
We noticed that the g nodes could be grouped into 2l groups in
each stage l, each group only requiring a single bit of memory
to store their partial sums, for a total of N − 1 memory bits.
For example, looking at Fig. 2, we notice that all partial sums
in stage 0 can be stored in a single bit, provided that this
bit be reset at each odd clock cycle of the decoding process.
Similarly, we see that the nodes of stage 1 can be grouped
into 2 partial sums, provided that the first two partial sums be
stored in the same location (same for the last two), and that
both locations be reset at clock cycles 3 and 7. Fig. 11 shows
the mapping of each partial sum to one of the N − 1 1-bit
flip-flops, for N = 8.

F. Partial Sum Update Logic

Every computation of function λg requires a specific input
ŝl,z corresponding to a sum of a subset of the previously
estimated bits ûN−10 , per (5). This subset of ûN−10 needed
for the g node with index z when decoding bit i in stage l is
determined according to the indicator function

I(l, i, z) = B(l, i) ·
n−2∏
v=l

(B(v, z)⊕B(v + 1, i))

·
l−1∏
w=0

(B(w, z) +B(w, i)), (29)

where · and
∏

are the binary AND operation, + the binary
OR operation, and B(a, b) , b

2a mod 2. An estimated bit ûi
is included in the partial sum if the corresponding indicator
function value is 1. For example, the values of the indicator
function when N = 8 and l = 2 are

I(2, i, z) =

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

and the first four partial sums are

ŝ2,0 = û0 ⊕ û1 ⊕ û2 ⊕ û3,
ŝ2,1 = û1 ⊕ û3,
ŝ2,2 = û2 ⊕ û3, and
ŝ2,3 = û3.

Using the indicator function, the general form of the partial
sum update equation is

ŝl,z =

N−1⊕
i=0

ûi · I(l, i, z), (30)

where
⊕

is the binary XOR operation.
In terms of hardware implementation, since each evaluation

of function g requires a different partial sum ŝl,z , flip-flops
are used to store all needed combination. Since the hard
decisions ûi are obtained sequentially as decoding progresses,
the contents of flip-flop (l, z) is produced by adding ûi to the
current flip-flop value if I(l, i, z) = 1. Otherwise, the flip-flop
value remains unchanged.

Using the time multiplexing described in the previous
section, the indicator function can be further simplified:

I ′(l, i, z̆) = B(l, i) ·
l−1∏
v=0

(B(l − v − 1, z̆) +B(v, i)), (31)

where z̆ corresponds to the index of the flip-flops within a
stage. Since time multiplexing is used in the partial sum regis-
ters, a flip-flop in stage l effectively holds 2n−l−1 partial sums,
at different points in the decoding process. Both indexing
methods are illustrated in Fig. 11.

G. Frozen Channel ROM

A polar code is completely defined by its code length N
and the indices of the frozen bits in the vector u.

Our architecture stores the indices of those frozen bits in a
1-bit ROM of size N . Every generated soft output λL0,i

passes
through the ui computation block, which sets the output to
the frozen bit value if indicated by the contents of ROM, or
performs a threshold-detection-based hard decision otherwise.
This ROM is addressed directly using the current decoded bit
i.

Note that this implementation opens up the possibility of
easily reprogramming the decoder for different operational
configurations by replacing the contents of this ROM with
a different set of frozen bits; the architecture of the decoder
is decoupled from its operational parameters. Since a polar
code is created for given channel conditions—e.g.: the noise
variance for the AWGN channel—replacing the ROM by a
RAM would allow the indices of the frozen bits to be changed,
adapting to the current channel conditions.

H. Controller

The controller module coordinates the various phases and
components of the decoding process. To support those tasks,
it must compute different control signals, such as the current

9

10−5

10−4

10−3

10−2

10−1

100
FE

R
/B

E
R

1 2 3 4
Eb/N0 (dB)

FER Q = 4

FER Q = 5

FER Q = 6

FER FP
BER Q = 4

BER Q = 5

BER Q = 6

BER FP

Fig. 12. Effect of quantization on error-correction performance for the
(1024,512) polar code.

decoded bit i, the current stage l, and the portion ε of a stage
being processed, 0 ≤ ε < d 2

l

P e.
Being sequential, the calculation of i is straightforward,

using a simple n-bit counter enabled each time the decoder
reaches l = 0.

The stage number l, on the other hand, involves a computa-
tion slightly more involved—as illustrated in Fig. 4—because
it relies on both i and ε. Whenever ε ≥ d 2

l

P e, i is updated and
l is modified such that it is set to the index of the first bit set
in the binary representation of the updated value of i, or to
n− 1 when i wraps around N − 1.

Since stage l needs 2l calculations, it requires d 2
l

P e uses of
the processing elements—and thus the same number of clock
cycles—to perform all computations associated with this stage.
Therefore, a simple counter is used to keep track of ε, with a
reset conditioned on the above condition.

The controller also controls a multiplexer located at the
input of the RAM. During the input phase, this multiplexer
selects the channel buffer as the input to the RAM; during
the decoding, it selects the outputs of the processing elements
instead.

Then, the controller selects the input of the processing
elements using a set of multiplexers located at the output of the
RAM, depending on the value of the read and write addresses
provided to the RAM. If those addresses point to overlapping
locations in memory, it selects the bypass buffer as part of the
inputs to the PEs: it bypasses the low part (resp. high part)
of the memory output if the least significant bit of the write
address is 0 (resp. 1).

Finally, the controller selects the function (f or g) performed
by the processing elements based on B(l, i), as described in
Section III.

VII. IMPLEMENTATION RESULTS

We start this section by investigating the effects of imple-
mentation parameters on error-correction performance. Then,
we present the implementation results for FPGA and ASIC,
comparing them with other works in the literature.

TABLE I
RESOURCE UTILIZATION OF THE BP AND SC DECODERS ON THE XILINX

VIRTEX IV XC4VSX25-12 USING THE (1024, 512) POLAR CODE.

Algorithm LUT FF BRAM T/P (Mbps)

BP [15] 2,794 1,600 12 2.78
SP-SC 2,600 1,181 5 22.22

A. Decoding Performance

Two factors impact the error-correction performance of the
hardware decoder: the number of quantization bits Q used to
represent LLRs and the maximum channel symbol magnitude
allowed before saturation occurs.

Fig. 12 shows the BER for the (1024, 512) code using Q =
{4, 5, 6} quantization bits, in addition to the BER of the non-
quantized decoder. The quantized decoder inputs were limited
to the range [-2, 2] and values outside this range were clipped.
From the figure, we note that when using 4 quantization bits,
the BER is degraded by less than 0.25 dB. However, increasing
Q to 5 results in performance almost matching that of the non-
quantized decoder. Further increasing Q offers no benefit for
this decoder. We therefore use Q = 5 and saturate the decoder
input to [-2, 2] for the implementation analysis.

B. FPGA Implementation

To the best of our knowledge, there is only one other
hardware implementation of a polar code decoder [15] in
the literature. That work implemented a semi-parallel belief-
propagation (BP) decoder on a Xilinx FPGA and presented
throughput and error-correction performance results. The
error-correction performance of this BP decoder was provided
for 50 decoding iterations without early termination; it matches
that of our SC decoder using 4 bits of quantization. However,
the throughput results of [15] were provided for 5 iterations
of the decoder; we therefore scale them down by a factor
of 10 to allow a comparison of the BP and SC decoders at
the same error-correction performance. From Table I, which
summarizes the resources used by a BP and an SC decoder
having the same error-correction performance, we see that
the proposed SC decoder utilizes fewer resources—especially
memory resources—while providing an information through-
put an order of magnitude greater than that of the BP decoder.
The BP decoder may reduce the number of iterations at high
SNR to increase its throughput. However, such a strategy
would increase the implementation complexity and was not
reported in [15].

In addition to the N = 1024 code, we also implemented
codes up to N = 217 = 131, 072 in length. Table II presents
the synthesis results for these codes on an Altera Stratix IV
FPGA. We chose the number of PEs implemented to be 64 as
it was able to achieve over 90% of the throughput of a line
decoder running at the same frequency, and Q was set to 5. We
also included the results with P = 16 for the N = 1024 code
because the throughput loss due to the semi-parallel nature of
the decoder is offset by a higher clock frequency. From the
table, we note that the number of look-up tables (LUT), flip-
flops (FF), and RAM bits grows linearly in code length N .

10

TABLE II
FPGA SYNTHESIS RESULTS ON THE ALTERA STRATIX IV

EP4SGX530KH40C2 USING THE POLAR CODES OF DIFFERENT LENGTHS.

N P LUT FF RAM (bits) f (MHz) T/P (Mbps)

210 16 2,888 1,388 11,904 196 87R
210 64 4,130 1,691 15,104 173 85R
211 64 5,751 2,718 26,368 171 83R
212 64 8,635 4,769 48,896 152 73R
213 64 16,367 8,868 93,952 134 64R
214 64 29,897 17,063 184,064 113 53R
215 64 58,480 33,451 364,288 66 31R
216 64 114,279 66,223 724,736 56 26R
217 64 221,471 131,764 1, 445,632 10 4.6R

TABLE III
COMPARISON WITH AN 802.16E (WIMAX) CTC DECODER [15] ON A

XILINX XC5VLX85.

Decoder LUT FF BRAM DSP f (MHz) T/P (Mbps)

CTC [15] 6,611 6,767 9 4 160 30
PC (4096) 7,356 4,293 6 0 94 39
PC (8192) 12,154 8,386 10 0 68 28

The frequency decreases almost linearly in the logarithm of
the code length n.

Analysis revealed that the reduction in operating frequency
is largely due to the partial-sum update logic. Since the imple-
mentation of the semi-parallel decoder, except the contents of
the frozen-bit ROM, remains the same regardless of the code
rate R used, the operating clock frequency is independent of
R. For example, the N = 216 code has an information-bit
throughput equal to 26.35R Mbps. Hence, high values of R
can be used to reach a throughput close to 26.35 Mbps. The
information throughput values as a function of the code rate
R for the other code lengths are also provided in Table II.

The throughput of the line decoder is given by 0.5fR. As
such, it will be faster than a semi-parallel decoder operating
at the same frequency. However, as indicated by the results
for the N = 1024 code, increasing P reduces the operating
frequency. As a result, a line-decoder—if it is implementable
given the available hardware resources—will have a lower
operating frequency and a higher complexity than a semi-
parallel decoder. The largest line decoder that was successfully
synthesized for this FPGA was of length N = 212.

To compare the resource utilization and speed of the semi-
parallel polar decoder to those of other codes, we have elected
to use the convolutional turbo code (CTC) decoder for the
802.11e (WiMAX) standard presented in [15]. We found that
a (4096, 2048) polar offered FER within 0.2 dB of the (960,
480) CTC WiMAX code and an (8192, 4096) polar code
was within 0.1 dB; therefore, we compare the throughput and
synthesis results of decoders for these three codes in Table III.
For the (4096, 2048) code, the implementation complexity is
comparable: SP-SC requires more LUTs, but fewer flip-flops
and block-RAM banks. The throughput of SP-SC was 30%
higher than that of the CTC decoder, even thought it had a
lower clock frequency. The (8192, 4096) SP-SC decoder had
higher complexity than the CTC one and its throughput was
7% lower.

C. ASIC Implementation

In addition to the FPGA implementation, we have also
synthesized the semi-parallel SC decoder as an ASIC using
Cadence RTL Compiler with a 65nm TSMC standard-cell
library. Table IV presents these synthesis results for different
code lengths with a target clock frequency set to 500 MHz.
We note that the majority of the area is occupied by the
circuitry required to store the LLR results of the calculations.
This is in large part due to the use of registers instead of
RAM as we did not have access to a RAM compiler for
the 65nm technology. The partial-sum update circuitry also
occupied a sizable portion of the design as a result of the large
amount of multiplexing and logic required by these operations.
Finally, the throughput values for these designs are also given
in Table IV and are all greater than 240R Mbps.

VIII. CONCLUSION

In this paper, we proposed a new semi-parallel architecture
for successive cancellation decoding of polar codes. We first
showed that butterfly-based and line decoder architectures have
a very low utilization rate. Then, we took advantage of the
very regular structure of polar codes to increase processing
resource sharing further. The throughput penalty is showed to
be small in comparison with the drastic reduction in processing
complexity. The resulting semi-parallel decoder architecture
was then detailed and implemented on FPGA and ASIC
targets. FPGA implementation shows that polar code decoders
are getting close to existing CTC decoder in terms of hardware
resources utilization and throughput.

Future work will focus on increasing the clock frequency
by simplifying the partial sum update logic and associated
registers, which are now the main contributors to the critical
path in successive cancellation decoding of polar codes.

REFERENCES

[1] C.E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, pp. 379–423, 623–656, Jul.-Oct. 1948.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo-codes,” in ICC 93, Geneva,
May 1993, vol. 2, pp. 1064–1070.

[3] R. Gallager, “Low-density parity-check codes,” IRE Trans. on Informa-
tion Theory, vol. 8, no. 1, pp. 21–28, Jan. 1962.

[4] E. Arıkan, “Channel Polarization: A Method for Constructing Capacity-
Achieving Codes for Symmetric Binary-Input Memoryless Channels,”
IEEE Trans. on Inform. Theory, vol. 55, no. 7, pp. 3051–3073, Jul.
2009.

[5] E. Sasoglu, E. Telatar, and E. Arıkan, “Polarization for arbitrary discrete
memoryless channels,” in Proc. IEEE Information Theory Workshop
ITW, 2009, pp. 144–148.

[6] H. Mahdavifar and A. Vardy, “Achieving the Secrecy Capacity of
Wiretap Channels Using Polar Codes,” IEEE Trans. on Information
Theory, vol. 57, no. 10, pp. 6428–6443, Oct. 2011.

[7] N. Hussami, R. Urbanke, and S.B. Korada, “Performance of polar codes
for channel and source coding,” in IEEE ISIT 2009, Jun. 2009.

[8] S.B. Korada and R.L. Urbanke, “Polar Codes are Optimal for Lossy
Source Coding,” IEEE Trans. on Inform. Theory, vol. 56, no. 4, pp.
1751–1768, Apr. 2010.

[9] Ido Tal and Alexander Vardy, “List decoding of polar codes,” in Proc.
ISIT, 2011.

[10] R. Mori and T. Tanaka, “Non-binary polar codes using Reed-Solomon
codes and algebraic geometry codes,” in Proc. IEEE Information Theory
Workshop (ITW), 2010, pp. 1–5.

11

TABLE IV
ASIC SYNTHESIS RESULTS TARGETTING THE TSMC 65NM PROCESS AT 500 MHZ.

N P Q Area (µm2) LLR Mem. (%) Part. Sums (%) PEs (%) Control (%) T/P (Mbps)

210 64 5 308,693 76.10 17.52 4.77 0.48 246.1R
211 64 5 527,103 77.15 18.85 2.99 0.33 244.2R
212 64 5 940,420 76.60 20.91 2.00 0.23 242.4R
213 64 5 1, 893,835 79.92 18.78 0.97 0.15 240.6R

[11] S. B. Korada, E. Sasoglu, and R. Urbanke, “Polar Codes: Charac-
terization of Exponent, Bounds, and Constructions,” IEEE Trans. on
Information Theory, vol. 56, no. 12, pp. 6253–6264, 2010.

[12] C. Leroux, I. Tal, A. Vardy, and W. J. Gross, “Hardware architectures
for successive cancellation decoding of polar codes,” in Proc. IEEE
Int Acoustics, Speech and Signal Processing (ICASSP) Conf, 2011, pp.
1665–1668.

[13] Tong Zhang and K.K. Parhi, “A 54 Mbps (3,6)-regular FPGA LDPC
decoder,” in IEEE Workshop on Signal Processing Systems, (SIPS ’02),

Oct. 2002, pp. 127–132.
[14] M.P.C. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity

iterative decoding of low-density parity check codes based on belief
propagation,” IEEE Trans. on Comm., vol. 47, no. 5, May 1999.

[15] A. Pamuk, “An FPGA implementation architecture for decoding of polar
codes,” in 8th International Symposium on Wireless Communication
Systems (ISWCS), Nov. 2011, pp. 437–441.

