
c©2012 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

doi: http://dx.doi.org/10.1109/IPEC.2012.6522661

http://dx.doi.org/10.1109/IPEC.2012.6522661

A Successive Cancellation Decoder ASIC for a
1024-bit Polar Code in 180nm CMOS

A. Mishra∗, A. J. Raymond†, L. G. Amaru∗, G. Sarkis†, C. Leroux‡, P. Meinerzhagen∗, A. Burg∗, and W. J. Gross†
∗Telecommunications Circuits Laboratory, EPFL, Lausanne, Switzerland

†Department of Electrical and Computer Engineering, McGill University, Montréal, Québec, Canada
‡IMS Laboratory, Institut Polytechnique de Bordeaux, Bordeaux, France

Abstract—This paper presents the first ASIC implementation
of a successive cancellation (SC) decoder for polar codes. The
implemented ASIC relies on a semi-parallel architecture where
processing resources are reused to achieve good hardware effi-
ciency. A speculative decoding technique is employed to increase
the throughput by 25% at the cost of very limited added
complexity. The resulting architecture is implemented in a 180nm
technology. The fabricated chip can be clocked at 150 MHz and
uses 183k gates. It was verified using an FPGA testing setup and
provides reference for the true silicon complexity of SC decoders
for polar codes.

I. INTRODUCTION

Polar codes, introduced by Arıkan in [1], are a new class
of error-correcting codes that provably achieve the capacity
of symmetric binary-input discrete memoryless channels. Re-
cently, polar codes have also been extended to the additive
white Gaussian noise channel [2] and to other relevant chan-
nels [3]. An important property of polar codes is that the
complexity of the encoder and of a successive cancellation
(SC) decoder scales only as O(N · logN) [1], where N = 2n

is the code length. However, the scaling behavior usually
provides only little information on the true silicon complexity
of a corresponding circuit and the availability of hardware
efficient VLSI architectures for a new type of code is key to
demonstrate the practical relevance of these new codes.

A first step toward this objective has been made in a number
of recent publications that propose different implementation
strategies for the decoder. The first high-level considerations of
a potential SC decoder implementation were already described
in [1]. Later, more hardware efficient sequential architectures
were described in [4], [5] and [6]. A comparison that shows
the superiority of SC decoding over the alternative belief
propagation algorithm at comparable complexity was provided
in [7], together with a semi-parallel architecture that further
reduces complexity compared to [4]. Unfortunately, all of the
above publications consider only the register-transfer level and
provide no ASIC implementation.

Outline and Contributions: In this paper, we describe the
first ASIC implementation of a decoder for polar codes. To this
end, we first summarize the successive cancellation decoding
algorithm and highlight the scheduling of computations in the
decoding process. We also describe the semi-parallel decoder
architecture in Section II. In Section III, we propose an
architectural modification of the semi-parallel decoder that

improves throughput by 25% without noticeable overhead and
describe the circuit-level details of the processing elements.
Finally, ASIC implementation and measurement results are
summarized in Section IV.

II. DECODING ALGORITHM AND ARCHITECTURE

In this section, we first review the SC decoding algorithm,
then the semi-parallel SC decoder architecture of [7].

A. Algorithm

Let the polar code under consideration have length
N and code rate k/N . Denote the binary input vector
(u0, u1, .., uN−1) by uN−10 . Only k elements of uN−10 carry
information: the remaining N − k bits are fixed to 0 and are
called the frozen bits. The frozen bit indices are determined
by the communication channel type and conditions [8]. Both
information and frozen bits are encoded into the codeword
xN−10 = uN−10 G, where G is the polar code generator matrix.
The codeword xN−10 is sent over the communication channel.
At the output of the channel, yN−10 is received and the cor-
responding log-likelihood ratios (LLRs) LN−1

0 are calculated.
An SC decoding algorithm produces an estimate ûi of a bit ui
given LN−1

0 , the previously decoded bits ûi−10 , and the frozen
bit set. If ui is in the frozen bit set, then ûi = 0; otherwise, ûi
is decoded based on the LLR of ûi (Lûi). As shown in (1), Lûi

is a function of LN−1
0 and ûi−10 . The dependency of Lûi

on
ûi−10 imposes the sequential decoding order û0, û1, . . . , ûN−1.

ûi(L
N−1
0 , ûi−10) =

{
0, if Lûi

(LN−1
0 , ûi−10) ≥ 0

1, otherwise.
(1)

B. Algorithm to Architecture Mapping

The SC decoding algorithm leads to a regular data depen-
dency graph (DDG) [1]. In Fig. 1, the DDG for N = 8 is
depicted. Each computational node in the graph can operate
either on likelihood ratios, as proposed in [1], or directly on
LLRs, as proposed in [4]. The latter yields a considerable
reduction in complexity at the cost of only a minor degradation
in error-rate performance. There are two different types of
nodes: f and g. The f -type node receives as input two LLRs
(La, Lb) and calculates an output LLR as

Lf (La, Lb) = sign(La)· sign(Lb)·min(|La|, |Lb|). (2)

Fig. 1. DDG of a SC polar decoder for a code of length N = 8.

The g-type node also receives as input two LLRs (La, Lb), in
addition to a partial modulo-2 sum (⊕) of previously estimated
bits (ûs). In this case, the output LLR is

Lg(ûs, La, Lb) = La· (−1)ûs + Lb. (3)

The computation of Lûi is equivalent to a topological-order
traversal of the graph starting from LN−1

0 on the right-hand
side. Note that the maximum-length path in the topological-
order traversal of the graph is not logN , but 2N − 2 due the
data dependency of the g-nodes on previously decoded bits
ûs.

Directly mapping the computational nodes in the DDG to
N · logN hardware processing elements (PEs) leads to an
isomorphic implementation with a critical path that spans
2N−2 PEs which is impractical and hardware inefficient. The
line architecture [4] [5] reduces the number of PEs to N/2 by
means of iterative decomposition at the cost of 2N memory
elements (MEs) while maintaining approximately the same
decoding latency. However, the regular structure of the DDG
permits further sharing of PEs, increasing the utilization rate of
PEs with minor latency penalties. To exploit this opportunity,
the semi-parallel SC decoder [7] provides a tunable number
(P < N/2) of PEs. The time scheduling for a semi-parallel
SC decoder with N = 8 and P = 4 is denoted by CCorig in
Fig. 3. The decoding latency for the semi-parallel SC decoder
was 2N+ N

P · log(N
4P) and the memory requirements remained

the same as that of the line architecture.

C. Architecture

The architecture described in [7] divides the semi-parallel
SC decoder into four major units: an array of P PEs, the
LLR memory, the partial-sum update logic and the associated
storage registers, and the controller, as shown in Fig. 2.
Additionally, a read-only memory (ROM), implemented as a
lookup-table (LUT), is used to store the indices of the frozen
bits for a given channel signal-to-noise ratio, chosen as per [8].

Processing Elements: Without resource sharing (i.e., P =
N/2 PEs), the employed SC decoder architecture estimates
the bits ûN−10 sequentially, in 2N − 2 clock cycles. The
corresponding decoding schedule is identified by CCorig in

Fig. 3. However, since it was shown in [7] that a small P
is sufficient to achieve 90% of the throughput of a decoder
with N/2 PEs we instantiate only P = 64 PEs for the chosen
code block size of N = 210). Each PE implements both the
f and g functions in the LLR domain (2) and (3), using the
sign-and-magnitude representation.

LLR Memory: The LLR memory allows the reuse of
intermediate results from PE calculations during the decoding
process. Unlike [7], our LLR memory is implemented using
registers, which are connected to the PEs using a multiplexer
network. Since each PE uses two Q-bit values to calculate one
Q-bit value, the registers are of size Q.

Partial Sums: Throughout the decoding process, the pro-
cessing elements need partial sums û′s,z of the estimated bits
ûi to compute Lg . These partial sums are calculated through
continuous updates of the stored û′s,z during the decoding
process to yield

û′s,z =

N−1⊕
j=0

ûj · (β(j, s) · δ(j, s, z)) (4)

β(j, s) = B(s, j)

δ(j, s, z) =

s−1∏
v=0

(B(s− v − 1, z) +B(v, j)),

where B(s, j) = j
2s mod 2, and where β(j, s) and δ(j, s, z)

are masks that indicate if ûj contributes to û′s,z or not. The
operator

∏
denotes the binary product, and δ(·) = 1 when

s = 0. Note that this expression already takes into account the
time multiplexing introduced in [7], which reduces the amount
of memory needed for the partial sums from O(N · logN) to
O(N).

The hardware for the update corresponds to (N−1) registers
and a small amount of combinational logic in front of each
partial sum storage element, as illustrated in Fig. 2. This logic
computes β(·)δ(·), with s and z being the hardwired indices
of û′s,z . If any of those blocks yields true for a given decoded
bit, ûi is added (⊕) to the current content of the corresponding
storage element.

Controller: The controller coordinates the decoding process
with three state counters: the currently decoded bit index i,
the current stage index s, and the portion of a stage ps being
processed, 0 ≤ ps < d 2

s

P e. The bit index i is implemented
using a sequential counter incremented whenever s reaches
0. The stage number s is a function of both i and ps: when
ps ≥ d 2

s

P e, i and s are updated. Because some temporary
computations are still available in the LLR memory, not all
stages have to be evaluated when decoding a bit i. Specifically,
s is set to the index of the first bit equal to 1 in the
binary representation of the updated i, or to n − 1 if i has
wrapped around N − 1. We notice that stage s requires 2s

PE computations. Due to the time sharing of only P PEs this
requires d 2sP e clock cycles that are counted by ps.

In addition, the controller is in charge of selecting the
appropriate inputs to the PEs, selecting the right function to
perform, and selecting the proper memory locations (LLR and

PE0PE0

EN

Read
Add

Write
Add

Write
EN

P
E
s

A
r
r
a
y

2P*Q

P*Q

P*Q

P

F or G

La

Lb

LLRin

LLRout

P

La

Lb

La

Lb

EN

LOAD

DEC
EN

i

s

EN

ps

CNT

CNT

CNT

Controller

LLR Mem

LUT

Partial Sum

Read
Add

Write
EN

Q

Q

DECODER

LUT

L
U
T

L
U
T

WEN

WEN

Read
Add

Read
Add

i s ps

i

s

ps

i

ûF

ûG
ûS

i

s

ps

ûF ûG

i

û
F
f
rz

û
G
f
rz

ûi

i

i

ûF
ûG

ûF
ûG

i

s

ps

Read
Add

PE0
f

g

PE1

PEP−1

ûS

g

f

g
ûS

f

g
ûS

Q

T

Fig. 2. Polar decoder high-level architecture

partial sums) to update. These signals are calculated from i,
s, and ps using small LUTs, as indicated in Fig. 2.

III. ARCHITECTURAL IMPROVEMENTS

A. Concurrent Decoding in Stage 0

In order to improve the throughput of the decoder, the archi-
tecture is modified to reduce the number of cycles required to
decode one codeword by N/2. The improvement is achieved
by decoding two bits at a time whenever the decoder is in the
last stage (s = 0), which is possible by exploiting the fact
that two subsequent ûi are obtained from f and g nodes that
take the same input LLRs. Unfortunately, the g-node needs the
output of the preceding f node as its ûs0,z input. Therefore the
g-node output cannot be computed before the f node ouput is
available. The semi-parallel architecture in [7] computes the
g-node in the clock cycle after the f -node. In our architecture,
it is possible to compute both node outputs in the same cycle.
To this end, the two possible g-node outputs are calculated
speculatively while the output of f is calculated. The correct
g-node output is then selected with a negligible additional
combinational delay. Fig. 3 shows an example of the new,
shortened schedule of f - and g-nodes for concurrent decoding
of two bits in case of N = 8 and P = 4, denoted CCconc.
Overall the number of cycles for decoding is reduced by N/2.

In terms of area, it should be noted that only one of the P
processing elements must be able to perform this concurrent
decoding. Hence, the increase in silicon area is hardly notice-
able. However, since two bits are decoded concurrently, both
have to be considered also in the ûs memory update logic.
This extra logic renders the corresponding hardware slightly
more complex: the increase in total area due to this change
was only 1.62%. We note that this speculative approach is
similar to the one presented in [6]; however, it is applied to a
very different baseline architecture and is much simpler since
it applies only to one stage in the decoder. Furthermore, it
entails almost no additional hardware.

B. Optimized PE Implementation

The proposed architecture, used by all PEs, improves upon
the PE architecture in [7], which merges both functions f
and g in a single PE and thus shares a comparator and an
XOR gate between the two functions. The LLRs are stored
in sign-and-magnitude form. The value of sign(Lf) is given
by sign(La) ⊕ sign(Lb), whereas |Lf | is min(|La|, |Lb|), as
shown in (2) and (3).

The PE architecture in [7] calculates |Lg| by convert-
ing min(|La|, |Lb|) to two’s complement representation, and
adding it to max(|La|, |Lb|). The hardware for this operation
has a long carry path through the magnitude comparator, the
two’s complement conversion block (an adder), and the adder.
We note that |Lg| has three possible magnitudes, namely
(|La|−|Lb|), (|Lb|−|La|), and (|La|+|Lb|). The improvement
in the proposed architecture comes from calculating all the
possible values of |Lg| simultaneously in sign-and-magnitude
form; selecting the correct output based on ûs, sign(La), and
sign(Lb); and finally saturating as required. The change is
marked as PE Mod in Fig. 4. The value of sign(Lg) is given
by ûs ⊕ sign(La) when |La| > |Lb|, and sign(Lb) otherwise.
Compared to the proposal in [7], this optimized architecture
results in 50% reduction of the delay through the PE with an
increase of 30% in its area. However, since the PEs only make
up 8.5% of the total core area (for P = 64), the overall impact
is small and the area-delay product of the circuit improves
significantly.

Furthermore, a special PE—named PE0 in Fig. 2—is intro-
duced, which computes two decoded bits at a time as described
in Section III-A. PE0 has an additional g node output for
concurrent decoding, which is used in stage 0, as shown in
Fig. 3. We note that PE0 does not replicate a full g node but
shares the speculative computations of the normal PE. The
implementation uses 8 additional 2-input MUXs as compared
to normal PE. PE0 also functions as a normal PE when used
in stages 1 and 2. As a result, PE0 is 44% larger than the

Fig. 3. Schedule for original and improved semi-parallel SC decoder.

Sat

sign(La)

sign(Lb)

sign(La)

ûs

sign(f)

sign(Lb)

sign(g)

COMP

us

|Lb|

|La| |La|

|La|

|La|

|Lb|

|Lb|
|Lb|

Compab

Compab

f/g

|La|

|Lb|

F

G

Output

F function

G function

Shared

PE Mod

Critical Path

Fig. 4. RTL architecture of a standard PE

other PEs, but since this change only affects a single PE in
the entire design, the impact on total area is very small. The
delay through PE0 is virtually the same as that of the other
PEs.

IV. IMPLEMENTATION RESULTS AND MEASUREMENTS

This ASIC, implemented in the 180nm process, was built
with N = 1024, P = 64, and a code rate of 1/2. Each LLR
value is stored using Q = 5 bits in sign-and-magnitude form.
Synopsys Design Compiler and Cadence SoC Encounter were
used for synthesis and layout, respectively. The critical path of
the design originates from the controller, goes through the LLR
memory, a PE and back to the LLR and partial sum memories.
The layout is simple, with power rails on the periphery and
four additional pairs of vertical stripes to distribute the core
power without much drop. Functional testing of the chip was
done by connecting the chip to an FPGA board which supplied
the clock and the stimuli for each cycle, and recorded the
responses. The maximum achieved frequency is 150 MHz in
this setup. The measurement results are shown in Table I. A
micrograph of the chip is shown in Fig. 5, in which the PEs,
controller and partial sum memory are marked; while the LLR
memory accounts for the remaining, unmarked area.

V. CONCLUSION

Polar codes are an interesting candidate for error correction
in future telecommunication systems. The silicon complexity
of a successive cancellation (SC) decoder chip for a code
block size of 1024 bits is 183k gates, resulting in 1.72

Fig. 5. Microphotograph of the SC Polar Decoder chip.

TABLE I
SUMMARY OF MEASURED RESULTS FOR SC POLAR DECODER WITH

N = 1024, k = 512, P = 64, AND Q = 5

Technology 180 nm
Core area 1.71 mm2

Chip area 1.72 mm2

Gate count 183,637

Frequency 150 MHz
Throughput 49 Mbps

Voltage 1.3 V
Power 67 mW

Energy efficiency 1.37 nJ/bit

mm2 in a 180 nm technology. The corresponding throughput
is 49 Mbps. The key concepts for the hardware efficient
implementation of a SC decoder for polar codes are the semi-
parallel architecture proposed in [7], which makes the silicon
complexity feasible, and a concurrent decoding technique to
increase the throughput by 25% with negligible additional
complexity. On top of that, an optimized implementation of
the processing elements (PE) is important to achieve a high
operating frequency, as the critical paths pass through the PEs.

REFERENCES

[1] E. Arikan, “Channel Polarization: A Method for Constructing Capacity-
Achieving Codes for Symmetric Binary-Input Memoryless Channels,”
IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, July 2009.

[2] E. Abbe and A. Barron, “Polar coding schemes for the AWGN channel,”
in Information Theory Proceedings (ISIT), 2011 IEEE International
Symposium on, 31 2011-aug. 5 2011, pp. 194 –198.

[3] E. Sasoglu, E. Telatar, and E. Arikan, “Polarization for arbitrary discrete
memoryless channels,” in Information Theory Workshop, 2009. ITW 2009.
IEEE, Oct. 2009, pp. 144–148.

[4] C. Leroux, I. Tal, A. Vardy, and W. J. Gross, “Hardware architectures
for successive cancellation decoding of polar codes,” in Proc. IEEE Int
Acoustics, Speech and Signal Processing (ICASSP) Conf, 2011, pp. 1665–
1668.

[5] C. Leroux, A. J. Raymond, G. Sarkis, I. Tal, A. Vardy, and W. J Gross,
“Hardware implementation of successive cancellation decoders for polar
codes,” Journal of Signal Processing Systems, vol. 69, no. 3, pp. 305–315,
December 2012.

[6] Chuan Zhang, Bo Yuan, and Keshab K. Parhi, “Reduced-latency SC
polar decoder architectures,” in Communications, 2012. ICC ’12. IEEE
International Conference on, 2012, pp. 3520–3524.

[7] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A semi-parallel
successive-cancellation decoder for polar codes,” To appear in IEEE
Transactions on Signal Processing.

[8] I. Tal and A. Vardy, “How to construct polar codes,” submitted to IEEE
Trans. Inf. Theory, available online as arXiv:1105.6164v2, 2011.

